
Integrating Logic Analyzer Functionality into
VHDL designs

1S.Adilakshmi 2 K.Rajasekhar, 3 T.B.K.Manoj kumar

1Asst.prof,E.C.E Dept,K.L.university, AP-india.
2&3 MTech (vlsi), K.L.university, AP-India.

Abstract A combined hardware and software system for
the debugging of FPGA designs is designed. It provides a
powerful logic analyzer implemented as a fully
parameterized VHDL description. The system can insert
the analyzer into a user design without manual labor
required from the user. All processing is done on the
VHDL-level, facilitating vendor-independent, source-level
hardware debugging. The system also allows multiple
independent FPGA-systems to be debugged in a single
framework. Logic signal analyzers are very essential
instrument for digital circuit or board debugging. The
existing market solutions offer several features, but the
cost of such instruments is very high and most of the time
we don’t need that much capable instruments. A low cost
logic signal analyzer is implemented around the Spartan-3
FPGA. The FPGA being capable of offering high
frequency data paths in them become suitable for realizing
high frequency signal capturing logic. It includes
development FPGA based logic signal analyzer using
VHDL. The logic signal analyzer will be capable of
implementing match conditions, counter based triggering,
external clocking and internal clocking features. The
blocks such as registers, counters, comparators, state
machines will be used in realizing these blocks. The
captured data will be stored in memory before
transferring the data to PC. The UART core will be
developed which, will be used for transferring the data to
PC. Model sim Xilinx edition (MXE) tools will be used for
simulation. Xilinx FPGA synthesis tools will be used for
synthesizing the design for Spartan FPGAs. The developed
application will be tested on Spartan 3E development
board.

1. INTRODUCTION

Debugging of FPGA designs is a difficult task due to
the ever-increasing complexity of the chips.
Consequently, silicon and CAD system vendors offer
debug tools, mostly in the form of embedded logic
analyzers combined with a software analysis tool. Our
own research project is on high-performance computing
(HPC) for graphics and visualization using
reconfigurable devices. For this purpose we have built a
mini-cluster of four PCs, each equipped with two FPGA
boards. Each board contains one Xilinx Virtex-II
4000FPGA and a local memory of 512MB. The boards
have a PCI-X-interface and are directly connected with
each other via an own-developed interconnection
network. It is obvious that such distributed systems pose
heightened requirements on a debug tool concerning the
above criteria.
Problems can include:
• A faulty FPGA with direct access to host resources can
cause the host system to crash, which renders in-system
debugging impossible.

• Errors can propagate through the network and lead to
system failures at different places
• Reproducing erroneous situations in systems of
Independent components are a difficult task.
• Certain prerequisites, such as JTAG-chain throughall
devices, might be impossible to establish. Even if the
system works correctly there might be the need to
examine the internal circuitry very closely: for example
when the performance is lower than expected, and
bottlenecks or resource contentions must be eliminated.
This might require complex communication protocols to
be monitored and individual data packets to be tracked
through the entire system. Thus, the ability to insert
own-designed analyzer functions into both the hardware
and software might become indispensable for project
success. As an example, the designer might want to use
existing external memory as trace memory for long
recording times. Essentially, this requires the hard- and
software to be available as source code, or at least with
proper interfaces for extensions. There are quite a
number of debug tools on the market. Vendor-specific
tools include ChipScope from Xilinx, SignalTap from
Altera, and Reveal from Lattice. Vendor-neutral tools
include Identify fromSynplicity and FPGAView from
First Silicon Solutions; the latter, however, is for use
with an external logic analyzer. Our natural choice
would of course be ChipScope. This tool offers a host of
powerful features and integrates well with the
development environment (ISE). The hardware part
includes integrated logic analyzer cores (ILAs) grouped
around an integrated controller core (ICON). The latter
communicates via the JTAG port of the device under
test with a PC running the ChipScope analyzer software.
Multiple FPGAs can be debugged as long as they are in
single JTAG chain. User reports about ChipScope can
be found in [5] and [9].The cores are generated by the
CORE generator tool, presenting the user with dialog
boxes to enter the various parameters. The cores are
generated as netlists, which can be inserted into the
design using Xilinx’s core inserter tool. While it is
convenient for the user most of the time, this “black
box”-approach is difficult to adapt to the specific
requirements of a user design. Complex communication
protocols might be difficult to be monitored. This
problem is reflected in the fact that Xilinx offers special
cores for certain on-chip buses (OPB, PLB), but users of
other complex buses are basically on their own. As an
additional problem specific to our project, it appears to
be impossible to debug our eight distributed FPGA-
accelerators in one single framework. These
considerations led us to the conclusion that for ultimate

S.Adilakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3107 - 3111

3107

project success, we would need design sovereignty over
the debug tools. There are only few HPC systems on the
market which employ reconfigurable devices for
application acceleration. Cray's XD1 system provides
six Xilinx Vir-tex-4 FPGAs and 12 AMD Opteron
CPUs per chassis, of which up to 12 can be combined in
one cabinet [3].CPUs and FPGAs are connected directly
with each other through an interconnect fabric called
Rapid Array. However, this system has apparently been
discontinued, and so only few reports about its usage
can be found. In [12] we can find that ChipScope is
used for debugging via special cables; whether this
applies to multiple FPGAs is not reported. The RASC
RC100 Blade from SGI provides two Xilinx Virtex-4
FPGAs, and a globally shared memory of 80MB QDR
SRAM [10]. The interconnection is provided by the SGI
NUMAlink technology. For debugging SGI offers an
extended version of the GNU debugger GDB called
gdbfpga. It allows the FPGA design to be executed in
single-step mode, and internal values which have been
mapped to special debug ports can be read by the
debugger after each step.In this paper we present our
own approach to multi-host parallel FPGA debugging:
the InSight system. InSight is combined hardware and
software system which is able to debug benchmark and
control up to eight independent FPGA-systems in a
single framework. The hardware part is an on-chip logic
analyzer implemented as a parameterized VHDL
description. The software part is a graphical analysis
tool running on a remote PC. All processing and user
interaction is done on the VHDL level that means, the
users can select signals to be monitored from their
VHDL source code, and the InSight system will create a
combined VHDL description which includes the user
design and the analyzer functionality. No manual labor
is required; processing includes passing the signals
through all entity ports up the hierarchy, inserting all
modified component declarations and instantiations, as
well as inserting, wiring and configuring the logic
analyzer modules. Debugging within a subset of
multiple instances of the same module is supported,
even if they have been created in a generate loop. The
combined VHDL description is then ready for synthesis
and place & route, and after running the user design on
the FPGA the user can study the waveforms with the
original signal names preserved. In the following we
will explain the hardware design, and the methods and
principles used for VHDL processing. An example for
hardware consumption and Performance will also be
given.

2. LOGIC ANALYZER ARCHITECTURE
The architecture of the logic analyzer circuitry and the
host interface unit, further on collectively called
InSightCore, is shown in Figure 1b. A number of
independent Logic Analyzer Units (LAUs) is grouped
around the host interface unit, which has a dedicated
connection to the analyzer PC running the InSight
software. In our case, this is a standard RS232 interface.
The design of a LAU is detailed in Figure 2. Most of the
circuitry is clocked by the user design clock; we use
pipelining to achieve high clock rates. On the first stage,
a collection of match units can be placed. Currently we

have implemented three kinds of match units: a
numerical match unit NMU, a Boolean expression unit
BEU, and a transition detection unit TDU. Their design
is sketched out in Figure 3.The second stage provides
trigger level units and a storage qualifier unit. The third
stage finally contains the trigger position counter and
the trace memory. Besides that, circuitry to latch a
global time stamp counters, if existent, at trigger time is
provided. The signals entering a LAU are all recorded in
the trace memory; a subset or all of them are also used
as trigger signals. A numerical match unit (Figure 3a)
can compare any slice of the input signals to two
loadable constants A and B using =, > and < operators.
The result flags are combined in any desired way using
an 8x1 bit loadable memory. Likewise, Boolean
expressions of up to 6 variables can be evaluated using a
64x1 bit memory per Boolean expression unit (Figure
3b). The same Design principle applies to the transition
detection units (Figure 3c). The system currently
supports 8 match units of each kind, for a total of 24
match units, per LAU.A level unit (Figure 3d) can
combine the outputs of up to five match units using a
32!1 bit memory. In case a match has occurred, an event
counter is decremented. If the value has reached 0, the
level unit on the next level is enabled, or, if level 0 has
been satisfied, the trigger position counter is enabled.
All input signals have been continuously recorded in the
trace memory; if the trigger position counters expires,
recording stops, thus implementing variable trigger
offset. Then the host interface unit is notified. This in
turn sends the data to the analyzer PC, where the user
can graphically inspect the data using the analyzer
functions of the InSight software. All of the above
memories are controlled by the InSight software, so that
the exact operation of these units can be changed on the
fly without affecting the user logic. The presented
hardware units are very compact and fast, but still allow
versatile match functions, and complex trigger
sequences on up to four levels to be used. It should be
emphasized again, however, that any kind of specialized
match unit can be implemented if the need arises, as
opposed to commercially available (closed source)
tools. As can be seen in Figure 2, the user design signals
are loaded with just one register at the input of the
corresponding LAU, thus minimizing the effects on the
user logic.

3. INTEGRATING THE INSIGHT CORE INTO A
USER DESIGN

A debug session typically includes the following steps:
• selection of the user design signals to be monitored,
• definition of the trigger conditions and sequences,
• creation of a combined VHDL description for both the
user design and the InSight core, ready for synthesis and
place route
• configuration of the FPGAs,
• setup of all LAUs with the proper parameters.
Typically a complete VHDL design includes a top level
module which instantiates several components. These
might be divided further, resulting in a potentially very
deep hierarchy of modules. The InSight core is to be
placed in the top-level module as one additional
component.Thus, if signals of a module deep down in

S.Adilakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3107 - 3111

3108

the hierarchy need to be connected to a LAU, they must
be propagated up the entire hierarchy through all entity
ports of the traversed modules. Then, potentially large
numberof modules have to be modified. Multiple
instances of a given module to be debugged represent a
further problem, since in this case several different
versions must be created. Moreover, many of those
instantiations are the result of potentially nested
generate- loops, which must be handled correctly. An
additional issue is specific to the design environment.
Timing constraints, e.g. for multi-cycle paths (so called
FROM-TO-constraints), are specified in a separate
synthesis constraints file (.xcf-file in the Xilinx
framework) In a modular design there might be several
such constraints files, which must be consolidated into
one single file for the combined design, and all net and
instance labels must be extended according to their path
through the hierarchy.
3.1 The Instantiation Tree
Starting from the top-level module, a tree structure is
constructed which includes one node for each component
instantiation. For this purpose, all design files (VHDL
modules, VHDL packages, and synthesis constraints files) are

parsed.. In this way, each instance is represented by its own
node even if it was replicated in a generate loop. At the same
time the parsed constraints files are inserted into the tree. For
every instantiation of an entity having constraints file, the net
or instance labels along with their constraints are copied into
the node data. Once the tree is built, the user can select the
signals to be monitored from each individual instance
(whether replicated or not) and assign them to one of the logic
analyzer units. This is done via the GUI of the InSight
software. Each LAU can only receive signals from a single
clock domain, and that clock must be connected to its clock
input. When the user has finished signal selection and
assignment, the instantiation tree is modified bottom- up.If an
instance at a leaf node does not have signals to be monitored,
the process steps to the parent node and examines the other
children. If there are selected signals, these signals are
assigned to a special debug bus, such as INS_XX(0) <=
user_signal_a; INS_XX(4 downto 1) <= user_bus_b; which is
written into the node data. At the same time, the parent node is
updated to define ports 0 through 4 of the selected LAU as
being connected. Let’s assume there are two selected signals
in the next child, and then its node would be modified as
follows:

S.Adilakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3107 - 3111

3109

INS_XX(5) <= user_signal_c;
INS_XX(6) <= user_signal_d;
After all children have been processed, the parent’s own
selected signals, if any, are processed:
INS_XX(7) <= user_signal_e;
INS_XX(11 downto 8) <= user_bus_f;
The parent’s node would then define INS_XX(11
downto 0) as being connected. This process is
recursively repeated for all nodes in the tree.

3.2 Creating a combined VHDL Description
Once the node data items have been modified, a new
VHDL description is created. It has the form of one
single, large VHDL file containing all modules of the
user design and the InSight Core. The original user
design is left unchanged. Processing is done again
bottom-up in the Instantiation Tree.
If an instance at a leaf node does not have selected
signals, its VHDL description is appended unmodified
to the output file. The system keeps track of all modules
written into the output file so that multiple instances of
the same module are written only once. If a leaf instance
has selected signals, its entity name is modified to be
unique, the assignments in its node data (see above) are
inserted into its architecture definition and its entity port
(in the above example) is extended by INS_XX : out
std_logic_vector(4 downto 0); In this form the VHDL
description of the leaf instance is appended to the output
file. Once all child nodes have been visited, the parent
node is processed. If it has modified children, their
extended component declarations and module
instantiations are inserted. The new debug ports at their
port maps are connected to the debug bus as specified in
their respective node data. If the parent has selected
signals itself, the assignments are inserted, e.g.,
INS_XX(7) <= user_signal_e;

INS_XX(11 downto 8) <= user_bus_f;
and its entity port is extended by
INS_XX: out std_logic_vector(11 downto 0);
In this form its new VHDL description is appended to
the output file. The whole process is recursively
repeated for all modules. For the top-level module,
however, instead of extending the entity port list, the
debug buses are declared as internal signals.
Additionally, component declaration and module
instantiation of the InSight Core must be done. In this
modified form, the top-level VHDL description is
appended to the output file. Next, the VHDL-sources of
the InSight Core are written. They are appended
unmodified from their original form. All configurations
of the Logic Analyzer Units is done via a separate
VHDL package file (see next section).Also during tree
traversal, a new combined synthesis constraints file is
created. Whenever the process visits a node with a
constraints file attached, it appends those constraints to
the combined constraints file with properly adapted
label names

4. CONFIGURATION INSIGHT CORE
During synthesis, the InSight Core has to be configured
according to the specifications the user has supplied.
This includes:
• LAUs may be present or not,
• match units may be present or not,
• the width of each match unit,
• the members of the input bus to which each match unit
is connected,
• number of level units,
• the set of match unit outputs to which each level unit is
connected.
Generating VHDL descriptions from scratch for a given
configuration was found to be too complicated. Instead,

S.Adilakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3107 - 3111

3110

the InSight Core was implemented as a fully
parameterized
design, which can be copied into the combined
VHDL file in unmodified form. All configuration
information is instead written into a VHDL package file
containing a large number of parameters. This shall be
explained with the example of the Boolean expression
unit (BEU) in Figure 3b. Its up to six inputs need to be
connected to any set of signals of the VDn-bus (cf.
Figure 2). Assumed the system supports a maximum of
four LAUs with up to eight BEUs, each with up to six
inputs, a maximum of 192 inputs must be connected.
Thus, the package file contains an array of 192 integers,
defining for each input the element of the corresponding
VD-bus to which it shall be connected. Within the
VHDL-module
of a LAU, the BEUs are instantiated as shown below
(simplified). In the code snippet below, the
aforementioned integer array is called
BEU_INPUT_INDEX and defines the connectivity.
Further parameters written into the package file are
MAX_BEU and USE_BEU, which define the LAU
architecture. This principle is applied in the same way to
the other match units as well as the level units, and so
the LAUs can be comprehensively configured
by the InSight software.

5. SYNTHESIS AND PLACE & ROUTE
With the generation of the combined VHDL file, the InSight
package file, and the combined constraints file, the debug
version of the design is ready for synthesis and place & route.
As we have outlined, required user intervention in order to get
from a (modular) VHDL design to the debug version has been
kept to a minimum, with comprehensive GUI support. In our
project, we use FPGA designs of fairly high frequencies
(given the relatively old FPGA chips), ranging from 100MHz
(PCI-X-interface) to 160MHz (onchip bus). So far, insertion
of InSight Core did not cause problems for PAR to meet
timing requirements. Hardware resources consumed by
the InSight core depend of course on the number of
LAUs and their configuration. An example is given in
Table 1. A total of four LAUs have been connected to
four different parts (clock domains) of our design. Once
again, maximum clock frequencies of the original
design have not been affected by the inclusion of the
InSight Core.In this example, the InSight Core
consumed 1637 slice flip-flops (out of 46,080, or 3.6%),
1162 LUTs (2.5%), one Digital Clock Manager (DCM),
and 7 BlockRAMs (out of 120) for a trace depth of 512.

Table 1: Hardware Configuration

6. THE INSIGHT SOFTWARE SYSTEM
The InSight software is a multithreaded application with
a comprehensive graphical user interface.
Communication with the FPGAs is handled in separate
threads to assure responsiveness and stability of the
system. For a trace memory of 512!72 bits, transmission
of all debug data from a LAU to the analyzer PC takes
roughly 2.4s at38.4kbaud. Much design effort was spent
to provide high-performance graphics output. Since
trigger events can be widely separated in time on the
different FPGAs, waveforms tend to be very large along
the time axis. Likewise,the high number of signals
extends the height of the display as well. Thus, our
analyzer PC drives a total of four displays; still smooth
scrolling of very large bitmaps is possible without
noticeable flicker. A screenshot of the waveform
window is shown in Figure 4, displaying a collection of
signals from two FPGAs. Means for controlling the
FPGAs from the InSight software have also been
implemented. All parts of the InSight Core can be reset
by means of a software command (a working RS232
interface provided), and the FPGAs can be forced into a
complete reconfiguration.

7. CONCLUSIONS
We have presented the InSight system, a powerful tool
for debugging parallel, independent FPGA-systems. It
offers comprehensive trigger functions and can process
elaborate trigger sequences. Its most important feature,
however, is the autonomous processing of VHDL
designs without work required from the user. This has
been achieved by means of an instantiation tree
structure, which facilitates signal propagation through a
VHDL design hierarchy, and a fully parameterized
design of the logic analyzer hardware.

8. REFERENCES
[1] M. A. Aguirre, J. Tombs, A. Torralba, L. G. Franquelo,

“UNSHADES-1: An advanced tool for In-System Run- Time
Hardware Debugging”, LNCS, Proc. FPL 2003

[2] Altera Corporation, “SignalTap II Embedded Logic Analyzer
Documentation”, May 2008,
www.altera.com/literature/hb/qts/qts_qii53009.pdf

[3] CRAY Inc., “Cray XD1 Datasheet”,
www.cray.com/downloads/Cray_XD1_Datasheet.pdf

[4] First Silicon Solutions, “FPGAView Software“, http://
www.fs2.com/fpgaview.html

[5] P. S. Graham, “Logical Hardware Debuggers for FPGA-Based
Systems”, PhD Dissertation, Bringham Young University, 2001

[6] K. Klues, K. Gyang, J. Helmes, “Networked On-chipLogic
Analyzer (NOLA) for Real-Time Debugging ofHardware
Circuits on the FPX Platform”, 2004,userfs.cec.wustl.edu

[7] S. Lass, “Improving Time to Design Closure with ISESoftware”,
Xcell Journal, Fourth Quarter 2005, page 6

[8] Lattice Semiconductor Corporation, “Reveal: A NewSolution to an
Old Problem”,
http://www.latticesemi.com/corporate/newscenter/newsletters/ne
wsjune2007/revealdesigntool.cfm

[9] O. Oltu, P. L. Milea, A. Simion, “Testing of digital circuitry using
Xilinx chipscope logic analyzer”, Proceedings International
Semiconductor Conference CAS2005, pages 471 - 474

[10] SGI, “SGI RASC RC100 Blade Datasheet”,
2008,www.sgi.com/pdfs/3920.pdf

[11] Synplicity, “Identify”,
www.synplicity.com/products/identify/index.html

S.Adilakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3107 - 3111

3111

